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Abstract. The ground states of a two-dimensional quasiperiodic Ising model are investigated. 
The spin variables are put on the vertices of a tiling with quasiperiodic 8-fold symmetry and the 
couplings are short range, ferro- or antiferro-magnetic according to the pair distances. Among 
our results, the ordering of the spins is neither "ad nor random, but s ~ c m r e d  in a hierarchical 
way. A significant degree of frustration is present in the ground sates whose energy is computed 
exactly. The residual entropy is bounded from below and computed exactly some cases. 

1. Introduction 

In order to investigate the magnetic behaviour of quasicrystals at low temperature, a few 
models were proposed and analysed by Duneau et al (1991). We continue this work here. 

Since the atomic structure of quasicrystals is not yet entirely solved, there is no 
sufficiently exact model on which to make computations. Moreover the electronic problem 
in such materials is too involved to reach the level of reliable predictions. Nevertheless, one 
can raise the question of mapetic ordering on simpler models, such as Ising ones, built on 
quasiperiodic tilings whose structnre is better known and still close to actual quasicrystals. 
What is the influence, on the magnetic ground state, of an underlying aperiodic symmetry 
such as the 8-fold point symmetry and a quasiperiodic translational order? How does the 
ground state depend on the detailed features (in signs and strengths) of the spin interactions? 
These two questions summarize the scope of thework of Dnnean.erd(l991) and the present 
Paper. 

Similar questions have been approached by exact solutions, renormalization or numerical 
investigations. Geerse and Hof (1991) provide a good theoretical background and also a 
generous list of references including experimental results on the magnetic and spin-glass 
properties of real quasicrystals. 

The interactions are chosen to be short range and to .v&fOnly according to local 
geometric criteria so as to fulfil the positional symmetry. Despite these restrictions, the 
magnetic phase diagram at T = 0 shows a rich structure ranging from entirely rigid antiferro- 
or ferromagnetic states to effectively nncorrelated paramagnetic-like states. 

In this paper we pay attention to a model involving only first- and second-nearest 
neighbour interactions. The spins stand on the vertices of a quasiperiodic 8-fold symmetric 
tiling which is not the canonical octagonal tiling but another one, obtained as a simple and 
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locally derivable decoration of the former. The tiles of our model split into three species: 
two kinds of octagons and an irregular pentagon. Thii implies some degree of frustration 
provided at least one of the coupling constants is negative. Qualitatively, the frustration is 
neither strong enough to break the system into small and magnetically independent molecules 
nor weak enough to allow strict long-range order. Nevertheless, it can he solved exactly 
by means of the hierarchic and the spin-flip symmetries of the Hamiltonian. We will see 
that the ground states decompose into independent clusters whose sizes take values in a 
diverging subset of the natural numbers. The energy will also be evaluated exactly and the 
entropy will be bounded from below. 

To make the connection with the work of Duneau et a1 (1991) more precise, we can 
say that the model examined here is analogous to a component of phase (C) there. We are 
convinced that the state (C) can be solved exactly by a method similar to the one followed 
here but an explicit and complete solution would be complicated due only to technical 
reasons, and so is less appealing. 

Section 2 summarizes the main geometrical features of the quasiperiodic tiling under 
study. The king model is defined in section 3 which also contains the results on the ground 
state energy values. In sections 4 and 5, we carry out preliminary investigations on the 
spin-flip symmetries and on the connectivity of the graph induced by the interaction bonds. 
The bounds on the ground state energies are derived in section 6. Those estimates are based 
on a hierarchy of frustration loops which is defined and analysed in section 7. 

2. Geometry of the 8-fold tiling 

The octagonal tiling is obtained by the cut and project method (CP method) from It4, see 
the reviews by Steinhardt and Ostlund (1987), Janot and Dubois (1988), Henley (1987). 
In order to normalize the edges to unit len-6 in the physical plane, the hypercubic lattice 
is defined as A = JZZ4. The two orthogonal planes Ell and EL are the ranges of the 
following orthogonal projectors: 

The projections L = p ( A )  and LL = p'(A) are dense Z-modules respectively generated 
by {el , .  . .,e41 and [e:, . . . ,e,'], projections of the standard basis of the hypercubic lattice. 
In orthonormal coordinates in each plane: 

1 1 
e,' = -(I, -1). 4 e4 = -(-1, 1) 

J 2  

The standard octagonal tilings correspond to a cut region E = Ell x W where the 
acceptance domain W is, up to a translation, the projection of the unit cube of R4 into the 
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perpendicular space. W is a regular octagon generated by the four vectors [e:, . . . , e:} 
(see figure 1). The tilings in the physical space involve two types of tiles: a square, in two 
possible orientations, and a rhombus, in four possible orientations, which are the projections 
of the six different two-dimensional facets of the 4-cube. 

E F.G 

Figure 1. (a) Canonical octagonal tiling. (b),Local envimnments of the octagonal tiling with the 
position of the Gsites U, be added to the tiling. (c )  The acceptance domain W of ule octagonal 
tiling is the octagon spanned by the four vectm e:. e:. 8: and e:. ~W splits into 7 domains, 
A, B, C, DI, &. E and F, corresponding U, the neighbourhoods of the selected nodes. The 
Psites are surrounded by a square and two rhombi forming a hexagon. The symmetric position 
of the F-site in the hexagon is d e d  a G-site and corresponds to an acceptance domain made 
of 8 triangles, outside W, similar to those of the F-sites. 

The octagonal tiling shows a perfect inflation symmetry, due to the existence of an 
invertible integral linear transformation J in R4 which commutes with the action of the 
8-fold rotation group C8. J has the following equivalent expressions: 

r 1 1 0 -11 

where h = (1 + J2) is the inflation ratio. As a consequence the %modules L, L' are 
invariant under scaling by an integral power of A. 

Up to rotations, there are seven possible environments of tiles~sharing a common vertex, 
labelled A through F as shown on figure 1. This classification of sites correSponds to a 
partition of the octagonal window into seven different orbits (under C8) of acceptance 
domains. For instance all the A-sites come from nodes which project into the smal l  
octagon of edge length k-'. For convenience, the D-sites are decomposed into D1-sites 
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and Dz-sites according to the following rule: D1 sites have four E-sites and one D-site 
as neighbours, while Dz sites have two E-sites, two F-sites and one D-site as neighbours 
(see figure I@)). The F-sites correspond to eight triangular domains at the boundary of 
the octagon. These sites are surrounded by a square and two rhombi which build up a 
characteristic hexagon. Upon translation of the window in the perpendicular space EL,  the 
octagonal tiling undergoes a series of flips which mainly affect these hexagons: the F-sites 
jump to the symmetric positions at a distance A-' = J2- 1. These sites, unoccupied in the 
standard octagonal tiling, are labelled G-sites; they are associated to acceptance domains in 
E' which fall, of course, outside the octagon W and build up eight peripheral triangles as 
shown in figure 1. 

The patterns obtained by adding all the G-sites to the set of vertices of the octagonal 
tilings are of paaicular interest for our purposes. By the cut and project method, they can 
be obtained directly from an extended window, the 8-fold star shown in figure 1. All the 
hexagons of the underlying canonical tiling contain an F-site and a G-site, now equivalent 
up to second neighbours. These sites are separated by the shortest pair distance d, = A-' 
which is, up to symmetry and the scaling by 4 2 ,  the projection of a lattice vector of 
type(1, -1, 0, 1). The next nearest-neighbour distance is the small diagonal dz = 
of the rhombus, corresponding to a lattice vector of type (1, -1,O. 0); the third one is the 
edge length d3 = 1. 

By inflation symmetry, the extended tiling, with sites A, B, C, D, E, F and G, selected 
by the 8-fold star in E' is equivalent to: 

the set of A, B, C and D sites of a standard octagonal tiling at scale A-'; 
the set of A and B sites of a standard octagonal tiling at scale hYz. 

A last feature which will be useful in the following is parity. Since each site x is the 
projection of a unique lattice node = JZ(n1, nz,n3, n4) of A we can define the parity of 
x as that of nl +nz + n ~  + n4; consequently any structure S built by the CP algorithm splits 
into an even subset SA and an odd subset S-. 

3. The king model and its ground state energy 

We consider a system of king spins 0; = 4 3  placed on the vertices of the extended 
octagonal tiling, and coupled through the Hamiltonian 

where d, and dz are the nearest and next-nearest neighbour distances. 
The spins on A, B, C and D1 sites do not interact with anyone and will therefore be 

forgotten. The rest of the sites, namely those on Dz, E, F and G sites, are coupled by either 
J1 or Jz. This system of nodes and bonds is tightly connected (figure 2). It even induces a 
tiling of the plane by three types of tiles: a pentagon P, an octagonal moon crescent M and 
a regular octagon 0. Since the prescriptions to derive this tiling from the former extended 
octagonal one amount to remove the A, B, C and DI sites-and redefine the edges-the 
corresponding selection window is now the 8-fold star without the central octagon. This 
tiling obeys inflation rules which follow, in a straightforward way, from the inflation of the 
original octagonal tiling (this also appears on figure 2). 

As easily checked, J1 couples the odd subset with the even subset whereas JZ couples 
only spins belonging to the same parity class. In absence of applied magnetic field, the sign 



Ground states offrustrated Ising quasicrystals 2795 

Figure 2. The extended octagonal tiling is made of A, B. C, D, E, F and G sites. The two 
nearest neighbour intexactions JI and h only couple DI, E, F and G sites which correspond, in 
E', to a stellated octagonal window with a hole m the middle. The uncoupled A, B. C and DI 
nodes sit at the cemes of octagons. The dashed tiling corresponds to an Mated tiling. 

of J1 is therefore irrelevant since the energy is invariant-up to an overall constant-by 
changing the sign of 51 and flipping all the spins of one definite parity. For definiteness, 
we will assume 51 > 0. 

Frustration follows from the coupling Jz which is assumed to be antiferromagnetic 
( J z  e 0). The smallest frustration loop is the elementary pentagon (E, G, G, F, F} giving 
rise to a minimal energy equal to min(lJ11, I Jzl). For I J1I > 21521, the frustration is local, 
being completely restricted to those elementary pentagons. The situation is quite different 
when 1511 e 2154, where frustration loops of all sizes-roughly, pentagons inflated to all 
scale%give 'non-local' contributions to the ground state energy. The energy will be given 
as a function of the number of sites of different types, e.g. NO will denote the extensive 
contribution to the number of G-sites in a large but finite tiling, proportional to the area of 
the associated acceptance domain. Boundary Contributions to the energy will be neglected. 
The result is the following: 

I JI D"/2 if 1.711 < -Jz 

if -252 < 1511. 
minH(u) = I J I ING~/~+  IJzlNcJ2 if -Jz 6 1.711 6 -2Jz { IJzlNc, + IJz1Nc2/2 

The GI sites are meeting points of two Ps and either an M or an 0. The GZ sites are those 
G that are meeting points of a P, an M and an 0. See figure 2 where the corresponding 
acceptance domains are shown. We now proceed to derive these estimations. 

4. Spin fIip symmetries 

The connectivity associated to the JZ coupling alone is like that of a Sierpinski gasket 
(Mandelbrot 1977) where each vacancy is occupied by an independent cluster (gasket) 
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of the suitable size. The 52 bonds are lattice. vectors of type (1, -1,O, 0) (and cyclic 
permutations; the cyclic permutations of the four coordinates correspond' to 45" rotations 
in E " )  which couple separately S+ to S+ and S- to S-. The even subset S+ splits into 
S++, S+-,  according to the parity of nl + n3 and, similarly, the odd subset S- splits into 
S-+ and S--. Since the .I2 bonds only couple S++ with S+- and S-+ with S-- we 
conclude that the antiferromagnetic ground states are not frustrated. In other words, any 
closed loop made of only JZ bonds is even so that the minimum energy associated to the 
52 term in the Hamiltonian is zero. Such a ground state is specified for instance by letting 
spins up on S++ and down on S+-, and similar mutually opposite signs on S-+ and S-- .  
The degeneracy of the ground state energy follows from the occurrence of infinitely many 
connected components in either S+ or S-. Any connected component, for instance in S+, 
has all its S++ spins equal whereas the S+- spins have the opposite sign. 

Each block contributes to a factor 2 in the number of ground states. The total number 
JV of blocks is equal to the total number of isolated octagons at all scales of inflation. 
Therefore: 

log(Af) = A-'No(l +h-Z+A-4+...)log2=h-ZNo(l -A-2)-Llog2= Nolog2/(2A) 

where NO is the average number of octagons in the pentagon-octagon-moon tiling. It 
follows that the residual entropy, when JL = 0, is simply S(J1 = 0) = kNOlogZ/(ZA), 
where k is the Boltzmann constant. 

The J, bonds are found in the 'corridors' between the gaskets, one such bond being. 
attached to every G-site. The perturbation of the system with 51 = 0 by small J I  couplings 
can be handled in the following way. First notice that the J1 bonds, of type (1, -1.0, 1) 
(+ cyclic permutations), split into two classes according to the two possible orientations 
modulo a12 (i.e. 0 or a/4). One class couples S++ with S-- and S+- with S-+; the other 
couples S++ with S-+ and S+- with S--. If J I  is positive (ferromagnetic) and smaller than 

then the antiferromagnetic ground states described above for JI = 0 yield J1 bonds 
which are satisfied when they belong to the first class and frustrated when they belong to 
the second class. By symmetry, the four orientations of J1 bonds have the same density, 
therefore the corresponding energy is Jl No12 since the number of J1 bonds is equal to N o .  
It will turn out that this upper bound to the ground state energy is actually also a lower 
bound when IJIl < -J2. This implies that the value of the residual entropy computed 
above for 31 = 0 is a lower bound to the entropy when 151 I < - J2. 

5. Structure of the JZ bonds 

The gasket-like features of the J2 bonds pattern, shown in figure 3, result from a nice self- 
similarity property. This can be seen as follows. The JZ bonds build up (regular) octagons 
which are either isolated or connected to other octagons by either a common J2 edge or a 
double JZ coupling via a G-site. All these octagons can be labelled by their centre which is 
of type A, B, C or D1. Since the union of the corresponding domains is a deflated octagonal 
window (A-'"), these centres are the sites of an inflated octagonal tiling (by a factor A) 
and the associated octagons decorate this tiling. Adjacent octagons transform into small 
diagonals of rhombi and it can be checked that all such diagonals are obtained. Octagons 
coupled by a double J2 transform into diagonals of squares and all squares are involved 
with their unique diagonal which does not contain an F-site (in the new underlying tiling). 
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Figure 3. The pattem made by the Jz bonds showing a hiemchy of 8-fold symmetric clusters 
of aU sizes. The point marked with a dot is the mh'e of a globally 8-fold synune4ic pattem. 

Isolated octagons transform into isolated sites. Finally, the structure of the JZ couplings is 
isomorphic to a standard tiling with a different connectivity which we call the skeleton. 

The skeleton is made of octagons 0, pentagons P, hexagons & and heptagons H7. The 
hierarchical smcture. follows from a substitution rule which is the following (Duneau et a1 
1991): 

0 - - + 0 + 8 P  

P + 0 + H7 + 4/W, 

H6 --+ 0+2P+2&+2/2& 

H 7 + 0 + 5 P + 2 & . ,  

In the above formula the halves refer to hexagons shared by two adjacent iterated objects. 
The octagons and all their iterations of any order build up isolated clusters of all sizes, 
hence the similarity with a Sierpinski gasket. 

Due to inflation symmetry the POM (pentagon-octagon-moon) tilings show a hierarchy 
of self similar units. More precisely, the inflation of a frustrated pentagon is a pentagon 
of type (C, Dz. Dz, D1, D,}. A simple substitution rule transforms this pentagon into a new 
frustrated loop of larger scale and so on. These will be described in detail in section I. 

6. Energy and entropy bounds 

6.1. Case IJI I -2Jz 

6.1.1. Upper boundfor the groundstate energy. We use the Dz E F G description, and make 
the ansatz that only EG couplings can be frustrated. This implies that the spins on the two G 
sites of a pentagon have opposite signs, so that the E site is effectively decoupled from the 
other sites of the pentagon, with an energy contribution equal to I Jzl for any configuration 
satisfying the ansatz. If we remove all wj bonds, we observe that the network of remaining 
bonds is decoupled into isolated pairs of E-sites coupled by Jz, and quasi-onedimensional 
smctures with exactly one loop, of unbounded size but not frustrated. These loops are. in 
one-@one correspondence with the comdors previously described. Choosing arbitrarily one 
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of the two ground states of each decoupled structure yields a global configuration satisfying 
the ansatz. 

Therefore, for any JZ < 0, 

IIIhH(U) < ~ J z ~ N P  = IJ?INo, 4- [Jz1h2;,/2. 
0 

The residual entropy of this state is the sum of the entropy associated to the loops, 
equal to S(J1 = 0) computed in section 4, plus the contribution of the isolated %E pairs 
the number of which is equal to (NE - ND)/2. 

There exist in  fact other configurations with the same energy and not satisfying the 
ansatz, in particular with some FF bonds frustrated, so that the above estimate of the 
residual entropy is only a lower bound. 

6.1.2. Lower bound for  the ground state energy. The frustration on a pentagon may be 
located on a Jz bond, in which case it is not shared with any other pentagon, or on a 51 
bond, in which case it can be shared with a neighbouring pentagon. The energy attached to 
an individual pentagon is thus larger than or equal to min(l J I [ ,  [ J11/2). Therefore, for any 
J2 < 0, 

which concludes the proof in the case lJ11 > -2Jz. 

6.2. Case I J ,  I < - J2 

6.2.1. Upper bound of the ground state energy. The paity argument presented in section 
4 provides an upper bound in any case. Taking into account the identity N(J1) = NO, it 
yields 

minff(U) < [Ji[N&. 
0 

6.2.2. Lower bound of the ground state energy. Pentagons come isolated or in groups of four 
or eight. In addition to pentagons Lo = P, we shall count frustration loops L,, n = 1,2, . . ., 
built by iteration of a substitution process, as explained in the next section. The main 
properties of this family of loops, including the pentagons LO at the original scale, is that 
any given bond JZ or 51 belongs to at most two loops. Therefore, for any J2 < 0, 

=min(lJll, lJzl)N0/2 

according to the counting performed at the end of section 7. This concludes the case 
lJil < -52. 

When I JI I < - Jz,  the residual entropy is equal to S( J I  = 0) as computed in section 4. 
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6.3. Case -Jz < I J, I < -ZJ, 

6.3.1. Upper bound of the ground state energy. We start from a configuration which would 
be a ground state if I J1 I e 4 2 ,  where half of the 5, couplings are frustrated; more precisely, 
half of the FGI couplings and half of the FGz couplings are frustrated. The FGz couplings 
belong to moon crescents, made of two FGI bonds (coupling J I )  and six JZ couplings. We 
now change the configuration by flipping the spins on the three sites Gz, Dz, Gz, in every 
frustrated crescent. This has the effect of removing frustration from the crescent, and taking 
it onto the regular octagons in the concavity of the corresponding crescents. 

The resulting confi,wation has an energy ;I JIINO, + 41 JzING, as desired. 
These configurations, which are shown below to be ground state configurations, provide 

a lower bound to the residual entropy equal to S(J1 = 0). 

6.3.2. Lower bound of the ground state energy. Let us consider again the frustration loops 
already introduced. At first sight, we only have 

but this bound can be improved. The count of energy resulting from frustration can in fact 
be optimized as follows: 

(i) Isolatedpentaton IFGzEGzF] : 1521 
(ii) ‘Inner’ pentagon (F GI E GI F} : I JI  1/2 
(iii) ‘Border’ pentagon (FGzEGI F) : (I J I  I + I Jz1)/4 
(iv) Inflated isolated pentagon: I JzI/Z.  

This count is easily verified when the frustrated segments of all the inflated loops are of 
the type EG2, and are thus shared with ‘border’ pentagons. Half of the ‘border’ pentagons 
then have EG2 frustrated, the other half must then have FGl frustrated, hence (iii). 

Whenever an inflated loop has frustration on a segment other than EG2, two associated 
‘border’ pentagons get a I J1 I frustration, hence an additional energy (1 51 I - IJ21)/2 which 
cancels the gain in energy which may have come from the displacement of the frustration 
of the inflated loop. 

The count (i)-(iv) gives the desired lower bound. 

7. The hierarchical sequence of frustration loops 

In this section, we draw loops L,. rz = 0, 1,2, ..., along the edges of the POM tiling 
(figure 2), in such a way that any given edge belongs to at most two loops. These loops 
will be made of two JI couplings and an odd number of .I2 couplings, and will therefore 
be frustrated for Jz  c 0. 

The first loops Lo = Pare the basic pentagons. Edges FGI separating adjacent pentagons 
already belong to two loops, and cannot be used any further. We thus remove these edges 
and obtain a new tiling made of the original octagons 0 and moons M, the original isolated 
pentagons PI, plus strings P4 and P8 of adjacent pentagons now considered as single tiles. 
This P10MFP8 tiling will be the starting point 0f.a substitution rule yielding a whole 
hierarchy of tilings of the plane defined as follows. 
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The original P10MP4P8 tiles are given the inflation index n = 1, and are accordingly 
denoted by PI, 01 ,  MI, Pf, P;. The substitution rule is the following (see figure 4): 

Pn + 30, + ZM,, P ~ + I  

0" + P: = 0"+1 

0, +Pi = M,+i 

4Pn + 90, + 5Mn = 

8P, + 160, + 8M, = Pi+, . 
The tiling at scale n + 1 can also be obtained from the tiling at scale n in the following 
way. 

(i) First of all, define the centre of P as the centre of its circumscribed circle (the five 
vertices stand on a common circle, avoiding ambiguities); the centre of P, will be defined 
similarly, by induction., 

(ii) Scale (homothetically) each P,, from its centre, by the factor -A. The scaled P, is 
denoted -A?,,. 

(iii) If n is even, define pnc as the maximal union of original POM tiles contained in 
-AP,; else (if n is-odd) define P"+l as the minimal union of original POM tiles containing 
-AP,. The set of Pn+l is made of three-types of connected components, which are isolated 
Pn+l or strings of 4 or 8 (overlapping) Pn+,. These components define the tiles Pa+], Pi+,, 
P:+l respectively. 

(iv) Dilate, from their centre and by the factor -A, only those 0, which are surrounded 
by a Pit pattern. 

(v) If n is odd, define On+] as the maximal union of original POM tiles contained in 
-,ton, else (n even) define On+] as the minimal union of original POM tiles containing 

(vi) Define the Mn+l patterns by scaling the 0, which are half-surrounded by a e 
pattern and applying the same rule as for the O,+I pattern, but amputating it of all the 
overlaps with the already defined patterns P,,+,, e,,, P:+l and On+]. 

To summarize the main features of these tilings, remark that, at all stage n, the number 
of prototiles is 5 and the prototiles P,, 0,. M,, e, P: are unions of the original tiles. The 
ordering of the tiles coincides with the ordering of the nth inflated tiling, which is at scale 
A". In particular, the linear size of the tiles is of the order of A" but the boundaries become 
more and more sinuous as n grows, due to the fact that each step is an exact partition of 
the original POM tiling. 

,., 

-,IOn. 

We shall use the following properties of boundaries of patterns: 

a ~ , , + ~  n a(-hP,) = 0 

ao,,, n a(-Ao.) = 0 

ao,,, c ap: 

a(oM)%+l c 89, U aP& 

where (OM), denotes a union of nearest neighbours O,UM,. The last relation holds because 
(OM)%+l = 02.  +Pin + 0% +e and 0%. being strictly inside the associated -A0%-1, 
cannot meet any P%+I which are also strictly inside their associated -AP%. 
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Figure 4. Substitution rule for the patterns Pn, O., Mn, e md P,$ 

The loops L,, n > 0, are defined as the boundaries of the transformed pentagons: 
L, = aP,. In order to obtain a lower bound to the energy in terms of half the number of 
loops, we must check that any given bond belongs to at most two loops. The argument 
goes as follows. 

First, notice the foUowing prop.erties (n > 1): 

(i) odd patterns P%-l lie strictly inside patterns P a  or e,, or P& (by construction); 
(ii) the boundary of any given pattern P b ,  Pk, P&, 0%-1 or (0M)k-l does not meet 

any Par contained in the given pattern. 

This last property is proven by induction. If it is true for PL-' and ph-,, then it is true 
for Oh-1 and (OM)%-, because of the inclusion relations above. If it is true for 0%-1 and 
(OM)%-l, then it is true for Pz,, F& P& because P b  = Pk-1 + 0%-1 + 2(0M)>-1 and 
Pa-1 satisfies (i) by induction, and Oh-,, (OM)%-l satisfy (ii) by induction. Similarly for 

1, at 
the same scale cannot get into contact. So, all we need to verify is that any given loop 
L, = aP, shares any of its particular bonds with at most one La, = aPn,, n' c n. We~first 
observe that, according to (i) and (ii), 

Pk, P&. 
Next, being boundaries of isolated transformed pentagons, two loops L., n 

aPn, n aP,, # 0 and Pnn c P, + n' even and n odd. 

If n is odd, P, is surrounded by 0" and (OM),, because of (i). Then (ii) implies that aP, 
CaMOt meet outside loops of smaller index. As for inside loops, the parity rule just above 
does not allow three nested loops to meet on a bond. If n is even, (ii) implies that aP, can 
meet only outside loops of smaller index. Such an outside loop aP,, must be of even index 
because of (i), and then cannot meet loops inside Pn, because of (ii). This concludes the 
proof. 

To be complete, we still have to count the loops. Since the ordering of the nth tiling 
is the same as the ordering of the n times inflated tiling, the total number NL of loops in 
U,,oL, is 

N&J = Np(l+ A-' + + . . .) = Np(1 - h-')-' = N p h / 2  
">O 

Now the number of Ps (at scale 1) is N p  = NE. So that NL = N ~ h . / 2  = NF = NG. 
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The direct consequence for spins is that, if all the loops Lo are frustrated, the ground 
state energy is bounded by: 

where bl and 62 stand for the ends of bond b and E&) is the minimal energy of the loop. 
E,(L) is strictly larger than zero if L is frustrated. 

8. Conclusion 

Compared to the high translational homogeneity of the model, as ensured by quasiperiod- 
icity, the magnetic ground states display some loss of regularity. Because of frustration, 
only hierarchical symmetry is preserved by the states to some degree. This provides a 
theoretical support to a magnetic behaviour analogous to the one of amorphous materials 
rather than to the one of fully ordered crystals. 
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